Neler yeni
MEGAForum - Teknoloji Forumu

Forum içeriğine ve tüm hizmetlerimize erişim sağlamak için foruma kayıt olmalı yada giriş yapmalısınız. Forum üye olmak tamamen ücretsizdir.

Rassal Değişken

diShy

~ یơυℓℓεss ..
Onursal Üye
  • Üyelik Tarihi
    27 Kas 2009
  • Mesajlar
    24,120
  • MFC Puanı
    79
Rassal değişken kavramının geliştirilmesi ile, sezgi yoluyla anlaşılan şans kavramı, soyutlaştırarak teorik matematik analiz alanına sokulmuş ve bu geliştirilen matematik kavram ile olasılık kuramı ve matematiksel istatistikin temeli kurulmuştur.

Son birkaç yüzyılda olasılıkla ilgili matematiksel fikirler geliştirilirken rassal değişkenlerlerle ilişkili teori ve kullanım matematik kuramı biçimlerine konulmuştur. Rassal değişkenleri modern matematik görüşle tam olarak anlamak için, daha yakın zamanlarda matematikçiler tarafından geliştirilmiş olan ölçüm kuramı hakkında geniş bilginin kazanılması gerekmektedir. Rassal değişken kavramı, bu kuram içinde tüm özellikleri ile arka planda kalmakla beraber, kuramın içeriğinde önemli bir yeri bulunmaktadır. Bununla beraber, rassal değişkenler kavramının matematiksel teoride değişik ileri seviyelerde fazla teori gerektirmeyen çok daha az ileri matematiksel bilgisi ile de anlaşılması mümkündür. Böylece rassal değişkenler hakkında temel bilgileri anlamak için sadece set kuramı ve değişkenler hesabının bilinmesi yeterli olmaktadır.

Geniş bir tanımlama ile, bir rassal değişken, değerleri rassal olan ve bu değerler için bir olasılık dağılımı saptamak imkânı olan bir sayıdır. Daha matematiksel biçimde, bir rassal değişken bir örneklem uzayından dağişkenin mümkün değerlerinden oluşan ölçülebilir uzaya değişimi gösterir. Rassal değiskenlerin bu formel tanımlanması reel değerli sonuçlar veren deneyleri çok sıkı bir surette matematiksel ölçüm kuramı çerçevesi içine sokmakta ve reel değerli rassal değişkenler için dağılım fonksiyonu kurulmasına imkân sağlamaktadır.

Sezgisel tanımlama

Genellikle bir rassal değişken sayı şeklinde değerler alır. Ama bu her zaman doğru değildir; çünkü vektör, karmaşık sayılar, sıralamalar veya fonksiyonlardan oluşan rassal değişkenler bulunmaktadır. Eğer değişkenler reel-değerli iseler o zaman bir rassal değişken her ele alınıp incelendiği zaman değer değiştirebilen bir bilinmez sayı olarak düşünülebilir. Böylece bir rassal değişken bir rasgele sürecinin örnek uzayını bir sayı setine eşlemesini yapan bir fonksiyon olarak görülebilir. Bunu daha göze çarpar bir şekilde şu örneğinlerle gösterebiliriz:

Örnekler

Hileli olmayan bir metal parayı havaya atma ve hangi yüzü geleceğini ele alma deneyini önce ele alalım. Tek bir deney için mümkün sonuç olaylar ya "yazı" ya da "tura" olur. Birkaç defa para atılması ve bunlardan kaç tane yazı geleceği şu rassal değişken ile ifade edilebilir:

88d948f7c203c1e134162a2212a44af2.png


ve eğer metal para için bu iki sonuç eşit olabilirlikli ise o zaman bu rassal değişken için bir olasılık kütle fonksiyonu bulunur ve şöyle ifade edilir:

c578dca9554ad95c8260069f1901b1a2.png


Bazan daha kolaylık sağlamak için bu haldeki değerler olarak ("yazı" veya "tura" kategorileri yerine) sayılar şeklinde olan bir rassal değişken tanımlanabilir. Bunu Y reel rassal değişkenini kullanarak ve bunu şu şekilde tanımlayarak yapabiliriz:

f287f367986ec0d2b0902be47e88efd5.png


ve eğer metal para için bu iki sonuç için her iki taraf eşit olabilirlikli ise o zaman olasılık kütle fonksiyonu şöyle ifade edilir:

c45d046273b4c76816b6a87b911ac143.png


Bir rassal ayrık rassal değişken kavramı kullanılması için diğer bir örneğin, hileli olmayan bir zar atılması ve düşen zarda üste gelen nokta sayısını görme şeklindeki deneyidir. Bu halde en basit açıklama, olası sonuçlar olan {1, 2, 3, 4, 5, 6} sayıları setinin "örnek uzayı" ve zar atınca gelen sayı X'in de rassal değişken şeklinde yapılabilir. Bu halde


b8f729ff81520acea9aabf731232dc22.png


da9a87fe11388ce324a151db780c3316.png


Bir sürekli rassal değişken için bir örnek sonunda belli bir yöne yönelip kalan bir döner ibreli aletin ibresi ele alınabilir. Bu örneğinde rassal değişken tarafından sonuç değerler yönlerdir. Bu yönler ayrık olarak Kuzey batı, Doğu güney doğu vb. şekilde ifade edilebilirler. Fakat genellikle örnek uzayını bir rassal değişkene eşlendirilmesi yapılırken reel sayılar kullanmak daha kullanışlı olacaktır. Bunu başarmak için döner ibresini son durma yönünü Kuzey'den olan saat yönündeki açısının derece birimi ile ifade edebiliriz. Böylece rassal değişken [O, 360] aralığında herhangi bir sayı şekilde ifade edilir ve her bir mümkün sayının açıklığı rasgelirliği "eşit olasılıklı"dır. Bu halde rassal değişken X= ibre duruş açısı olur. Herhangi bir belirli sayının olasılığı 0 olur ama bir sayısal aralık için bir pozitif olasılık sayısı verilebilir. Örneğin, [0,180] arasında bir sayının gelme olasılığı ½ olur. Bu halde olasılık kütle yoğunluk fonksiyonu demeyiz ama X için olasılık yoğunluğu 1/360 olur. (0, 360) alt-seti icin olasılık bu setin ölçüsünü 1/360 ile çarpma ile elde edilir. Genel olarak, bir belirlenmemiş sürekli rassal değişken seti için olasılık yoğunluğun verilmiş set üzerinde entegrasyonunu bulmak suretiyle elde edilir.

Karışık ayrık ve sürekli rassal değişken için örneğin bir matal parayı atmak ile eğer para "yazı" gelmişse bir döner ibreli aletin ibresini döndürmek şeklinde verilebilir. Bu deneyin sonucunun matematiksel ifadesi şöyle olur: Eğer para atış "tura" gelirse X= -1; aksi halde X döner ibreli aletin ibresinin durduğunda gösterdiği yönün Kuzeye göre saat yönündeki açı değeridir. Bu ikili deney için rassal değişken değerinin -1 olma olasılığı ½ olur; diğer aralıklar için rassal değişken değerleri bir önceki deneyin sonuçlarının yarısına eşittir.

Reel değerli rassal değişkenler

Bu halde,

5a31f52e7ced0763c4b1ac8e8931c0d8.png


bir olasılık uzayı olsun. O zaman, bir rassal değişken olan X formel bir tanınımla


12e0a825ae1cd23430434b662c14db50.png

ölçülebilir fonksiyonu olur.

Rassal değişkenlerin dağılım fonksiyonları

Bir yığmalı dağılım fonksiyonunu belli bir rassal değişkeni ile birlikte olduğunu düşünmek bir değişkene bir değer tahsis etmenin bir genelleştirilmesidir. Eğer yığmalı dağılım fonksiyonu sağdan sürekli bir Heaviside basamak fonksiyonu ise, o halde rassal değişken bu sıçrama için 1 olasılık değerini alır. Genel olarak, yığmalı dağılım fonksiyonu değişkenin belirli değerinde ne olasılık göstereceğini tanımlar.

Eğer

(Ω,A,P) olasılık uzayında tanımlanmış bir rassal değişken olan

1004b8d48a73411ec593a51df765399c.png


bilinmekte ise, şu şekilde soru sorulabilir:

"Xin değerinin 2 den büyük olması ne kadar olabilirliktedir?". Bunu aynı anlamda

"
b193d41571779cc77a7cdec527748c0e.png

olayının olasılığı nedir?" olarak sorabiliriz veya matematiksel ifade ile kısaca P(X > 2) olarak yazabiliriz.

Bir reel değerli rassal değişken olan Xin çıktılarının bütün değerlerinin olasılıklarının hepsinin kaydı yapılırsa X için olasılık dağılımı ortaya çıkar. Olasılık dağılımı Xi tanımlamak için kullanılan belirli bir olasılık uzayını unutur ve sadece X çeşitli değerlerinin olasılığını kaydeder. Bu türlü olasılık dağılımı her zaman şu yığmalı dağılım fonksiyonu tarafından ele geçirilebilir:

7cdeae7a5c802a159bb1a58afbbc436a.png


ve bazan da ele geçirme bir olasılık yoğunluk fonksiyonu kullanılarak gerçekleştirilebilir. Ölçüm kuramında rassal degişken olan Xi Ω üzerindeki P ölçüsünü R üzerinde bir F ölçüsüne "ileri itmek" için kullanırız.

Teorinin altında bulunan Ω olasılık uzayı rassal değişkenlerin varoluşlarını garanti etmek için , bazan de onları inşa etmek için bir teknik gereçtir. Pratikte çok defa Ω uzayı tümüyle bir tarafa bırakılır. Doğrudan doğruya R üzerine reel doğrunun tümüne 1 ölçü değeri tahsis eden bir yeni ölçü koyulur. Yani rassal değişkenler yerine olasılık dağılımları doğrudan doğruya kullanılır.

Momentler

Bir rassal değişkenin olasılık dağılımı, çok kere pratikte anlanması ve uygulanması kolay olan küçük sayıda parametreler ile nitelendirilir. Örneğin, sadece "ortalama değer" olan λ değerini bilmek Poisson dağılımını bilmek için yeterlidir. Ortalama kavramı matematik teoride bir rassal değişkenin beklenen değeri olarak, yani E[X] olarak ifade edilir. Genellikle E[f(X)] ifadesi f(E[X]) ifadesine eşit değildir. "Ortalama değer" bilinince, bu ortalama değerin X tipik değerlerinden ne kadar fazla uzaklıkta olduğu sorusu hemen akla gelir ve bu soruya yanıt bu rassal değişkenin standart sapması ve varyansı ile bulunur.

Matematik kuramı içinde bu (genelleştirilmiş) momentler problemi olarak bilinmektedir: Bilinmekte olan bir sınıf rassal değişkenler olan X için, E[fi(X)] ifadesindeki beklenen değerler ile rassal değişken Xin dağılımını tam olarak nitelendiren bir {fi} fonksiyonlar koleksiyonu bulunması istenmektedir.

Rassal değişkenlerin fonksiyonları

Eğer X rassal değişkeni Ω üzerinde bulunursa ve f ölçülebilir fonksiyon R → R ise, bu halde de Y = f(X) de Ω, üzerinde bir rassal değişken olacaktır. Buna neden ölçüculebilir bir fonksiyonun kompozisyonu da ölçüulebilir olmalıdır. Bizi bir olasılık uzayi olan (Ω, P) den (R, dFX)ye gitmemize izin veren yordam Y için dağılımı bulmak için de kullanılabilir. Y için yığmalı dağılım fonksiyonu

b25bbcb7625683128fcbaac53eb99658.png


Olur.

Örnek 1

X reel değerli bir sürekli rassal değişken olsun ve Y = X2 olsun. O halde,

Eğer y<0, o halde

68d7a2f63dd57073db73ad25f842bfad.png


P(X2 ≤ y) = 0, ve bu nedenle

1d8f4489df8c9da26f8ae88277881b63.png


Eğer y ≥ 0 ise, o zaman

fc6bfbea1bbad75abdf03c11dbfc1c13.png


olur ve bundan dolayı

e0ba7dbec193262fcc17bf01dd39e068.png


Örnek 2

bir rassal değişken olsun ve yığmalı dağılımı şöyle ifade edilsin
2925413f284a47e27191e5dff364850e.png
Burada
07bd3e03ded5652168193343f10571c2.png
sabit bir parametredir. Şimdi şu rassal değişkene, yani
9bdc30dd0936c1d795f7f5734dbb37f6.png
bakılsın. O zaman
fd2f54ca60d02bd58bdc667a2ce660d6.png
Bu son ifade X,in yığmalı dağılımı terimleri ile şöyle hesaplanabilir:

5ee89e20c6045f8563cef772bf1130fe.png


Rassal değişkenlerin birbirine eşitliliği

Rassal değişkenlerin birbirlerine eşitliliği kavramı birbirlerinden değişik anlamları olan çeşitli şekillerde açıklanabilir. Bu değişik şekiller soyle siralanabilir: iki rassal değiskenin eşitliliği; nerede ise kesinlike eşitliği; ortalama olarak eşitliliği; dağılım içinde eşitliliği. Bu sıralama değişik eşitlilik kavramının tarifinin artan teorik sıkılığına göre (en çok baglayıcı tanımdan en zayıf tanıma doğru) yapılmışstır. Bu değişik eşitlilik kavramların ayrıntiılı tanımları aşağıda verilmektedir.

Dağılım içinde eşitlilik

İki rassal değişken X ve Y eğer aynı dağılım fonksiyonuna sahip iseler; yani

918cfa3b231fa8aa63d758f4347fb965.png


ise, dağılım içinde eşitlilik gösterirler

Birbirine eşit moment üreten fonksiyonu olan iki rassal değişken de aynı dağılımi gösterir. Örnegin, bu çeşit eşitlilik bazı fonksiyonların eşit olup olmadıklarını kontrol etmek için kullanılır bir yöntem olabilir.

Dağılım içinde eşitlilik göstermeleri için rassal değişkenlerin aynı olasılık uzayında tanımlanmalarına gerek yoktur. Dağılım içinde eşitlilik kavramı, olasılık dağılımları arasında bulunan uzaklık kavramı ile soyle ifade edilen yakın bir ilişkisi bulunmaktadır:

b32e26618a3d7f758c4f0b7ac1a5c0d6.png


Bu tanımlama Kolmogorov-Smirnov sınaması için temel teoriyi sağlar.

Ortalamada eşitlilik

İki rassal değişken X ve Y için, eğer |X - Y| nin p-inci momenti sıfır ise; yani


b7335c372a39a8ba848ae46db61ef8f6.png

ise p-inci ortalama için eşitlilik kavramı tanımı ortaya çıkar.

p-inci ortalama eşitlilik kavramı aynı zamanda her r<p için r-inci ortalama için eşitlilik anlamını içerir.

Daha önceki eşitlik tanımına benzer olarak, bu kavrama göre de iki rassal değişken arasında bir uzaklık ilişkisi şu ifade ile açıklanabilir:

d875504630e8d873eec684525b1b99ea.png


Nerede ise kesinlikle eşitlilik

İki rassal değişken X ve Y birbirine nerede ise kesinlikle eşitliliği sadece ve sadece iki değişken için birbirinden farklı olma olasılığı sıfır olursa, yani

6c86605b7bb6211bf43714f1d9df0e50.png


olursa ortaya çıkar:
Olasılık kuramının pratik kullanılmasi için bu tanımlama ve bu kavrama gore iki olasılık değişkeninin birbirine eşitliliği hiç olmazsa diğer eşitlilik kavramları kadar kesindir.

Bu tanımlama şu uzaklık kavramı ile ilişkilidir:

8c32b668c5375b86da6da3b06b0b7609.png


Burada 'sup' ölçülme kuramı içindeki zorunlu üstünlük kavramını ifade eder.

Eşitlilik

Sonuncu tanıma göre ise, eğer olasılık uzaylarında fonksiyonlar olarak birbirine eşitlerse, yani


5db3df8e40d8596cb1f5e7ed1cb9a057.png

olursa, iki rassal değişken olan X ve Y birbirine eşitdirler.

Yakınsalama

Matematik istatistik analizinin büyük bir kısmı baziı rassal değişkenler serilerinin yakınsalama sonuçlarının geliştirilmesinden oluşmuştur. Örneğin, büyük sayılar yasası ve merkezsel limit teoremi maddelerine bakın.

Bir rassal değişken serisi olan Xnnin limitte bir rassal değişken olan X'e yakınsalaması değişik tanımlamalara göre değişmektedir; bunun için olasılık değişkenlerinin yakınsalaması maddesine bakın.
 
Üst Alt