Neler yeni
MEGAForum - Teknoloji Forumu

Forum içeriğine ve tüm hizmetlerimize erişim sağlamak için foruma kayıt olmalı yada giriş yapmalısınız. Forum üye olmak tamamen ücretsizdir.

Matematikle ilgili ilginç bilgiler

OBERON

MFC Üyesi
  • Üyelik Tarihi
    20 Kas 2016
  • Mesajlar
    3,156
  • MFC Puanı
    41
* Matematik sözcüğünün , Antik Yunanca’daki “matesis” sözcüğünden geldiğini ve anlamının “ben bilirim” demek olduğunu biliyor musunuz?
* Pisagor’un, aynı zamanda tarihte en çok bilmece üreten matematikçilerden biri olduğunu biliyor musunuz?
1. Saniyede bir sayı söyleyerek ve günde 7 saat sayarak 1 milyara kadar saymak isteseydik, bunu ne kadar zamanda yapabilirdik?
Cevap: 60 . 60 . 7 . 365=108.7 sene.
2. 9′ un 9. kuvvetinin 9. kuvveti, yani, sadece üç rakamla ifade edilebilen en büyük sayıdır. Bu sayıyı henüz kimse hesaplayamadı.
Cevap: 369 milyon basamaklı bir sayıdır.
3. 1729 iki kübün toplamı olarak iki ayrı biçimde ifade edilebilen en küçük sayıdır.
1729=103+93 = 123+ 13
Bunu ilk fark eden Hintli matematikçi Ramanujan’ dır. İlginç olan bu işlemi daha sayıyı duyar duymaz zihninden yapmış olmasıdır. Bu sayıya Ramanujan Sayısı denir.

4. 1 ve kendisinden başka sayılara bölünemeyen pozitif sayılara asal sayı denir.En küçük asal sayı 2 dir. Bilinen en büyük asal sayı 2127-1 ‘dir. Bu sayı 39 basamaklıdır.
5. Googol nedir?
1 den sonra 100 sıfır yazılarak elde edilen sayıya bu ad verilmiştir (yani, 10100). Şimdiye kadar isimlendirilen en büyük sayılardan biridir. Googolplex, googoldan da büyük bir sayıdır. Bir googolplex 1 den sonra bir googol sıfır yazılarak elde edilen sayıdır. Bu sayıyı yazmak için Dünya-Ay arası uzaklığın yetmeyeceğini iddia edenler var.
6. Tüm matematik derslerinde en az bir öğrencinin çıkıp “hocam bunlar gerçek hayatta ne işimize yarayacak?” diye sorması.
Pİ SAYISI
Kısaca bir dairenin çevresinin çapına oranı, pi sayısını verir. İnsanoğlu, aslında çok önemli vazifeleri olan bu sayı üzerinde çok düşünmüştür. Yıllarca tam olarak bir değer bulamamakla beraber, gerçek değerine en yakın sonuçları kullanabilmek için çaba sarf etmişlerdir.
Pi’ nin kronolojik gelişimine baktığımızda günümüzde dahi tam bir sonuç bulunamamıştır. Çeşitli formüller üretilmesine rağmen sadece her seferinde gerçek değere biraz daha yaklaşılmıştır.
Arşimet 3.1/7 ile 3.10/71 arasında bir sayı olarak hesapladı. Mısırlılar 3.1605, Babilliler 3.1/8, Batlamyus 3.14166 olarak kullandı. İtalyan Lazzarini 3.1415929, Fibonacci ise 3.141818 ile işlem yapıyordu. 18.yyda 140, 19yyda 500 basamağa kadar hesaplandı. İlk bilgisayarlarla 2035 basamağı hesaplanırken günümüzde milyonlarca basamağa kadar çıkılıyor. İşin ilginç tarafı, hâlâ tam bir sonuç yok. Herhangi bir yerinde devir olsa iş yine kolaylaşacak. Ama henüz öyle bir şeye de rastlanmadı.
PRATİK HESAPLAMA YÖNTEMLERİ
5 ile çarpma: Çarpılacak sayının yarısı alınır ve sağına bir sıfır konulur. Sayı tek ise yarısı virgüllü olacaktır bu durumda virgül bir basamak sağa kaydırılır. (14×5=70)
25 ile çarpma: Sayının dörtte biri ve sağına iki sıfır ilave edilir. Virgüllü sonuç varsa iki virgül kaydırılır.(28×25=700)
50 ile çarpma: 5 ile çarpma ile aynıdır. Farkı sayının yarısı alındıktan sonra sonuna iki sıfır eklenir.(14×50=700)
15 ile çarpma: Sayının kendisi ve yarısı toplanır sonuna bir sıfır ilave edilir.(60×15=900)
11 ile çarpma: Eğer 11 ile çarpacağınız sayı iki basamaklıysa sayının birler ve onlar basamağı toplanır sayının ortasına yazılır.(27×11, 2+7=9, 27×11=297) Eğer toplam 10 ve daha büyük sayı ise elde onlar basamağına aktarılır.(38×11 , 3+8=11, 38×11=418)
9 ile çarpma: Sayı 10 ile çarpılır ve kendisi çıkartılır.
5 ile bölme: Sayının iki katı alınır ve bir sıfır eksiltilir. Sayının sonunda sıfır yoksa bir virgül sola kaydırılır.(25:5=5, 32:5=6,4)
25 ile bölme: Sayının dört katı alınır ve iki sıfır çıkarılır.(120:25=4,8)
10 ile çarpma: 10 ile çarpılan sayının sonuna bir sıfır ilave edilir. Eğer sayı virgüllüyse virgül sağa doğru kaydırılır. [15×10=150](10 un katları içinde aynı kural geçerlidir.)
MÜKEMMEL SAYILAR
Kendisi dışındaki bütün pozitif bölenleri (çarpanları) toplamı sayının kendisine eşit olan sayılara, mükemmel sayılar denir.
Bunlardan en bilineni 6 dır.
Bakalım 6 mükemmel bir sayımı. 6 yı tam bölen sayılar 1, 2 ve 3 tür. Bölenlerin toplamı
1+2+3=6 görüldüğü üzere 6 Mükemmel sayı kuralına uyuyor.
28 de bir mükemmel sayıdır.
28 in tüm bölenleri 1,2,4,7,14 tür toplamları 1+2+4+7+14=28 dir.
Görüldüğü üzere 28 de bir mükemmel sayıdır.
2n .( 2n+1-1 )
Mükemmel sayı bulmak için genel bir formül yoktur ancak yukarıda verilen formülle elde edilen sayılar birer mükemmel sayıdır. Formülden anlaşılacağı üzere, formülü kullanarak elde edeceğiniz mükemmel sayılar çifttir. Bu arada şunuda söyleyelim bilinen mükemmel sayılar içinde tek sayı olanları yoktur.
 
Üst Alt