Neler yeni
MEGAForum - Teknoloji Forumu

Forum içeriğine ve tüm hizmetlerimize erişim sağlamak için foruma kayıt olmalı yada giriş yapmalısınız. Forum üye olmak tamamen ücretsizdir.

  • Web sitemizin içeriğine ve tüm hizmetlerimize erişim sağlamak için Web sitemize kayıt olmalı ya da giriş yapmalısınız. Web sitemize üye olmak tamamen ücretsizdir.
  • Sohbetokey.com ile canlı okey oynamaya ne dersin? Hem sohbet et, hem mobil okey oyna!
  • Soru mu? Sorun mu? ''Bir Sorum Var?'' sistemimiz aktiftir. Paylaşın beraber çözüm üretelim.

Geometrinin Bölümleri

mum

Özel Üye
Özel Üye
  • Üyelik Tarihi
    3 Nis 2008
  • Mesajlar
    2,499
  • MFC Puanı
    0
Geometrinin Bölümleri

1. Analitik geometri: Tasvirleri ve geometri uzayındaki çalışmaları rakam ve cebir denklemleri kullanarak ifade eden matematik dalı. Analitik geometride noktalar, sıralanmış sayı kümelerinden meydana gelen koordinatlarla ifade edilir. Analitik geometrideki çalışmalarda problemin hususiyetine göre kartezyen koordinat sistemi (dik veya eğik) veya polarkoordinat sistemleri kullanılır. (Bkz. Analitik Geometri)
2. diferansiyel geometri: Hesaplamanın ve özellikle diferansiyel hesabın geometriye tatbik edildiği dal. On dokuzuncu yüzyıldaki en değerli matematik kitaplarında diferansiyel geometrinin temeli, düzlem ve uzaydaki eğrilerle uzaydaki yüzeyler olmuştur. Diferansiyel geometrinin temel kavramları eğrilerin teğetleri, teğetlerin değişmeleri ve eğrilikleridir. Kartografyadaki bir yüzeyin bir başka yüzey üzerine haritasının çıkarılması diferansiyel geometri kavramlarına dayanan bir çalışmadır. Bu sahada vektör ve tansör hesap, düzenli bir şekilde kullanılır. Geometrinin bu bahsinin anlaşılmasında, diferansiyel hesap esaslarının iyi bilinmesi gerekmektedir.
Bir yüzey uzaydaki dik kartezyen koordinatlarda f(x,y,z)=O fonksiyonu ile, uzay eğrisi ise iki yüzeyin arakesitiyle gösterilir. Bir uzay eğrisinin bir diğer ifadesi ise parametrik gösterilimle olur. x=f(t) y=g(t), z=h(t) ifadesi gibi, indisli olarak x i =f i (t) (i=1,2,3) şeklinde de olabilir. Burada t parametredir. Yay uzunluğu olan s, eğri üzerinde sabit bir noktadan ölçülür. Yay uzunluğu:
Eğrinin P(x i ) noktasının bulunduğu küçük parçasında dx i /dt teğet vektörünün, t i =dx i /ds ise, birim teğet vektörünü gösterir. p noktasında t i ’ye dik olan düzleme "normal düzlem" denir. t i ’nin değişim oranına (diferansiyeline) eğrilik vektörü denir. Ve bu t i ’ye diktir. t i (teğet) n i (normal) birim vektörlerinin arasında kalan düzleme öskülatör düzlem denir. Bu düzleme (P) noktasında dik olan vektöre binormal vektör denir. b i ile gösterilir. Üç vektörün meydana getirdiği t i , n i , ve b i formuna üçparmak kuralı denir. Çünkü eğri p noktası etrafında hareket eder. Bu hareket Frenet formülleri ile ifade edilir.
Yüzeyler f(x,y,z)=0 veya x i =x i (u,v) parametrik gösterilim ile ifade edilir u ve v parametreleri yüzeyin eğrileri veya gauss koordinatları olarak isimlendirilir. Bir s yüzeyinin eğrileri u ve v arasındaki ilişki ile verilmektedir.
3. Euclide geometrisi: Euclide geometrisi, ismini M.Ö. 300 yıllarında bu branşı kurarak uzay geometrisini yeniden düzenleyen geometrici Euclide’den alır. Euclide geometrisi Non-Euclide geometriden Euclide’in meşhur beş postülatı ile ayrılır. Bunlar paralellik postülatlarıdır. Non-Euclid geometrinin 19. yüzyılda ortaya çıkmasından önce, Euclide geometri çözülemeyen mantıki tümdengelim sistemlerini ve uzay ifadelerini sadece matematik ifadeler kullanarak çözmeye çalışırdı. Euclid, teorilerini aksiyomlar ve postülatlar olmak üzere ikiye ayırmıştır. Euclide’in postülatları şunlardır:
a) iki nokta bir doğru ifade eder.
b) Bir doğrudan bir doğru parçası elde edilebilir.
c) Bir daire bir merkez ve yarıçapı ile ifade edilebilir.
d) Bir dik açı bütünleyenine eşittir.
e) Bir doğru iki aykırı doğru tarafından kesildiğinde, meydana gelen iki iç açının toplamı 180°den küçüktür.
Düzlem geometride, geometri uzayı iki boyutlu düzlemdir. Euclid düzlem geometrisinde temel elemanlar noktalar ve doğrulardır. Teoremler, matematik aksiyomlardan yapılan çizimlerden sonuç elde edilmesi şeklindedir. Euclide geometrinin en iyi bilinen teoremi Pisagor teoremidir.
4. Projektif geometri: On beş ve on altıncı yüzyıldaki ressamların, üç boyutlu cisimleri iki boyutta temsil etme isteğinden doğmuştur. O zaman en iyi bir resmin, cisimle göz arasına konulacak bir camda ortaya çıkarılabileceğine gelinmişti. Projektif geometri, matematik bir disiplin olarak ancak 19. yüzyıldan sonra ortaya çıktı.
 
Üst Alt